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Abstract

Dynamics of a two-degree-of-freedom vibro-impact system in resonance is considered. The dynamical
model and Poincaré maps are established. When a pair of complex conjugate eigenvalues of the Jacobian
matrix cross the unit circle and satisfy the resonant condition l40 ¼ 1 or l30 ¼ 1; the four-dimensional map is
reduced to a two-dimensional one by the center manifold theorem, and the reduced map is put into its
normal form by the method of normal form. The two-parameter unfoldings of local dynamical behavior
studied in this paper develop the results of one-parameter family analysis. The Hopf and subharmonic
bifurcation conditions of period n–1 motion are given. The numerical simulation method confirms the
theoretical analysis. It is shown that there exists an invariant torus via Hopf bifurcation and period 4–4
motions via subharmonic bifurcation as two controlling parameters varying near the critical point for the
resonance l40 ¼ 1; and that there exists an invariant circle and unstable fixed points of order 3 bifurcating
from the fixed point, and the system leads eventually to chaos in the resonance l30 ¼ 1:
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Vibro-impact systems are often encountered in practice, for instance in the models of hammer-
like devices, rotor-casing dynamical systems, collisions of solids, ships moored at dockside, etc.
see front matter r 2004 Elsevier Ltd. All rights reserved.
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Impacts give rise to nonlinearity and discontinuity so that the vibro-impact system can exhibit
rich and complicated dynamic behavior and it is a good testing benchmark for nonlinear theories
[1–10]. During the past decades, nonsmooth dynamics of mechanical systems with impacts have
become the subject of several investigations, and many new methods have been advanced in
research of vibro-impacts. Holmes et al. [1] found a Smale horseshoe map in a mathematical
model for the bouncing ball. The classical pattern of period doubling bifurcation cascade was
observed numerically by Thompson [2], Shaw and Holmes [3]. Whiston [4], Ivanov [5] and
Nordmark [6] studied the singularities of maps derived from vibro-impact systems and proved
that such systems could undergo ‘‘grazing bifurcation’’ and lead to chaotic behavior. Recently, a
few researchers began to focus attention on the phenomena of Hopf bifurcations of the vibro-
impact systems and studied quasi-periodic or chaotic motion [7–9]. Xie [8] and Wen [9]
investigated codimension-two bifurcations corresponding to double eigenvalue �1: Wen et al. [10]
analyzed nontypical route to chaos via period-doubling bifurcation and quasi-periodic
bifurcation.

Iooss [11] studied the subharmonic bifurcation of one-parameter family in resonant cases
(l40 ¼ 1 or l30 ¼ 1) for maps in R2 and presented the conditions of subharmonic bifurcation.
Chenciner et al. [12] investigated tori bifurcations of various dimensions for high-dimensional
maps. Yieh-Hei Wan [13] considered the one-parameter family diffeomorphism and obtained the
conditions of Hopf bifurcation in the resonance l40 ¼ 1: Arnold [14,15] studied bifurcations of
periodic solutions for differential equation in resonant cases, and obtained topological
classifications of phase portraits for two-parameter families. Luo et al. [16] gave one-parameter
family analysis of bifurcations of period n–1 motions in two resonant cases for a two-degree-of-
freedom (2-dof) vibro-impact system.

In this paper, we investigate the two-parameter dynamics in two resonant cases l30 ¼ 1 and
l40 ¼ 1 for the same model of Ref. [16]. The two-parameter unfoldings of local dynamical behavior
are studied by theoretical methods, which develop the results obtained by one-parameter family
model. The conditions of Hopf bifurcation and subharmonic bifurcation from period n–1 motion
are put forward. In Section 2, the dynamical model and Poincaré maps are established, and then
period n–1 motion and its stability are studied by analytical methods. In 3.1, when a pair of
complex conjugate eigenvalues of the Jacobian matrix cross the unit circle and satisfy the
condition of the resonance l40 ¼ 1; the four-dimensional map was reduced to a two-dimensional
one by the center manifold method, and the reduced map was transformed into its normal form
by choosing a new base. We obtained the conditions which determined whether the fixed point
would bifurcate to an invariant or to cycles of period 4. Furthermore, we recall the divisions of
parameter A-plane which are investigated by Arnold [14], Berezovskaia [17] and Krauskopf
[18,19]. In 3.2, we introduce the Arnold method in Refs. [14,15] to investigate the resonance
l30 ¼ 1: The partition of parameter plane and phase portraits are obtained. Numerical simulation
results in Section 4 verified the theoretical analysis of Section 3. The schematic diagram of division
of the parameter plane is drawn and there are topologically different phase portraits for every
region. It was shown that there existed an invariant torus via Hopf (Neimark–Sacker) bifurcation
and period 4–4 motions via subharmonic bifurcation as two controlling parameters varying near
the critical point for the resonance l40 ¼ 1: For the resonance l30 ¼ 1; there might exist a stable
invariant circle and an unstable cycle of period 3 bifurcating from the fixed point, and then the
system leads eventually to chaos.
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2. The mechanical model and periodic motion of the vibro-impact system

The model for a 2-dof vibro-impact system is shown in Fig. 1. The masses M1 and M2 are
connected to linear springs with stiffness K1 and K2: Proportional damping is assumed. The mass
M1 impacts against a rigid surface W when its displacement X 1 equals the gap B. The impact is
described by coefficient of restitution R.

Between impacts, the governing equations are written in a nondimensional form [7]

1 0

0 vm

" #
€x1

€x2

( )
þ

2z �2z

�2z 2zð1þ vsÞ

" #
_x1

_x2

( )
þ

1 �1

�1 1þ vk

" #
x1

x2

( )

¼
1� f 20

f 20

( )
sinðot þ tÞ ðx1obÞ ð1Þ

and the impact equation of mass M1 is

_x1þ ¼ �R _x1� ðx1 ¼ bÞ; (2)

where a dot denotes differentiation with respect to the nondimensional time t, _x1þ and _x1�

represent, respectively, the departure and approach velocities of M1 at the instant of impact, and
the nondimensional quantities are of the forms

vm ¼
M2

M1
; vk ¼

K2

K1
; vs ¼

C2

C1
¼ vk; f 20 ¼

P2

P1 þ P2
; z ¼

C1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
K1M1

p ;

o ¼ O

ffiffiffiffiffiffiffi
M1

K1

r
; t ¼ T

ffiffiffiffiffiffiffi
K1

M1

r
; b ¼

BK1

P1 þ P2
; xi ¼

X iK1

P1 þ P2
ð3Þ

Letting c represent the canonical model matrix of Eq. (1) and taking it as a transition matrix, and
under the change of variables X ¼ cZ; Eq. (1) becomes

I €Z þ C _Z þ LZ ¼ ~F sinðot þ tÞ; (4)

where X ¼ ðx1;x2Þ
T; Z ¼ ðz1; z2Þ

T; I is a 2� 2 identity matrix, C ¼ 2zL ¼ diag½2zo2
1; 2zo

2
2	; L ¼

diag½o2
1;o

2
2	; ~F ¼ ð ~f 1; ~f 2Þ

T
¼ cTf ; f ¼ ð1� f 20; f 20Þ

T; and o1;o2 are the eigenfrequencies of the
Fig. 1. The model of 2-dof vibro-impact system.
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system. The general solutions of Eq. (1) are

xi ¼
X2

j¼1

cijðe
�Zj tðaj cosodjt þ bj sinodjtÞ þ Aj sinðot þ tÞ þ Bj cosðot þ tÞÞ; (5)

_xi ¼
X2

j¼1

cijðe
�Zj tððbjodj � ZjajÞ cosodjt � ðZjbj þ ajodjÞ sinodjtÞ þ Ajo cosðot þ tÞ

� Bjo sinðot þ tÞÞ ði ¼ 1; 2Þ; ð6Þ

where cij are the elements of the canonical modal matrix c; Zj ¼ zo2
j ; odj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

j � Z2j
q

; aj and bj are
the constants of integration which are determined by the initial condition and parameters of the
system, Aj and Bj are the amplitude parameters taking the form

Aj ¼
o2

nj � o2

ðo2
nj � o2Þ

2
þ ð2ZjoÞ

2
~f j; (7)

Bj ¼
�2Zjo

ðo2
nj � o2Þ

2
þ ð2ZjoÞ

2
~f j: (8)

Letting y ¼ ot; we choose a Poincaré section s ¼ fðx1; _x1þ;x2; _x2þ; yÞ 2 R4 � S1;x1 ¼ bg: Suppose
that a period n–1 motion (in each interval of time 2np=O; a single impact occurs) starts at the
point X 0 ¼ ð _x10þ;x20; _x20þ; t0Þ on s; then using Eqs. (5) and (6), we can obtain X 0 as functions of
the system parameters [7]. After choosing X 0 as the origin of s; we establish the Poincaré map
associated with the period n–1 motion

y0 ¼ f vðyÞ ¼ f ðy; vÞ; f ð0; vÞ ¼ 0; (9)

where

y ¼ ðy1; y2; y3; y4Þ
T
¼ ð _x1 � _x10þ; x2 � x20; _x2 � _x20þ; ðt� t0Þmod2npÞT 2 R4

is the perturbed vector of the period n–1 motion in the hyperplane s; v ¼ ðv1; v2Þ
T
2 R2 is the

control parameter vector and vc is the critical value of v.
Jacobi matrix of the Poincaré map (9) is

Df ð0; vÞ ¼ qf ðy; vÞ=qyjð0;vÞ: (10)

All entries of Df ð0; vÞ were represented as functions of the parameters; high-order terms of f ðy; vcÞ

could be calculated according to the implicit theorem [7]. If all eigenvalues of Df ð0; vÞ lie inside of
the unit circle, the fixed point X 0 is stable, so is the period n–1 motion. If some eigenvalues
penetrate the boundary of the unit circle at vc; the fixed point X 0 loses its stability, and so does the
period n–1 motion. In this case, bifurcation occurs. The type of bifurcation depends not only on
the degeneracy of Df ð0; vcÞ but also on high-order terms of f v: We will study Hopf and
subharmonic bifurcations in the resonant cases l40 ¼ 1 and l30 ¼ 1:
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3. Dynamical behavior of vibro-impact system in resonance cases

3.1. The resonance l40 ¼ 1

Let us continue to analyze the Poincaré map (9). Suppose that in some neighborhood of a
critical value v ¼ vc; Df ð0; vÞ satisfies the following assumptions:
(H1)
 Df ð0; vcÞ has a pair of complex-conjugate eigenvalues l1 ¼ l1ðvcÞ; l2 ¼ l̄1ðvcÞ on the unit
circle (jl1ðvcÞj ¼ 1), and the other eigenvalues liðvcÞ (i ¼ 3; 4) stay inside the unit circle, i.e.
jliðvcÞjo1;
(H2)
 ql1ðvÞ
qv1

jv¼vc
and

ql1ðvÞ
qv2

jv¼vc
a0; which is the transversal condition for the two-parameter

family of Eq. (9);

(H3)
 l41ðvcÞ ¼ 1; l1ðvcÞa� 1:
Let

pðlÞ ¼ l4 þ a3l
3
þ a2l

2
þ a1lþ a0 ¼ 0 (11)

be the characteristic equation for matrix Df ð0; vÞ: Then we have following lemma,

Lemma. The roots of Eq. (11) satisfy (H1) if and only if
(a1)
 ja0jo1;

(a2)
 ja1 þ a3jo1þ a0 þ a2;

(a3)
 a2ð1� a0Þ þ a0ð1� a2

0Þ þ a3ða0a3 � a1Þ40; and
(a4)
 a2ð1� a0Þ þ a0ð1� a2
0Þ þ a3ða0a3 � a1Þ ¼ a0a2ð1� a0Þ þ ð1� a2

0Þ þ a1ða0a3 � a1Þ ¼ 0; where

ai 2 R ði ¼ 0; 1; 2; 3Þ is dependent upon parameters of the system.
Let ri denote the eigenvectors of Df ð0; vÞ corresponding to liðvÞ ði ¼ 1; 2; 3; 4Þ: If r3 and r4 are a
complex-conjugate pair of eigenvectors, then let eigenmatrix P ¼ ðRe r1;�Im r1;Re r3;�Im r3Þ;
otherwise, let P ¼ ðRe r1;�Im r1; r3; r4Þ: By changing variables

y ¼ PY ; m ¼ ½m1; m2	
T ¼ v � vc (12)

map (9) becomes

Y 0 ¼ F ðY ;mÞ; (13)

where Y ¼ ðy1; y2; y3; y4Þ
T; and DF ð0;mÞ takes the form

DFð0; mÞ ¼

a �o

o a

D

2
64

3
75 (14)

with a ¼ Re l1ðvc þ mÞ; o ¼ Im l1ðvc þ mÞ; and D is a real 2� 2 matrix with eigenvalues l3ðmÞ
and l4ðmÞ:
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For map (13), there exists a center manifold [20] W ðz; z̄; mÞ on which map (13) can be reduced to
a two-dimensional map Fm : C! C; or

z0 ¼ lðmÞz þ
X3

iþj¼2

gijðmÞ
ziz̄j

i!j!
þ Oðjzj4Þ (15)

with

lðmÞ ¼ l0ð1þ m1
~l1 þ m2

~l2 þ Oðkmk2ÞÞ; (16)

where lðmÞ ¼ l1ðvc þ mÞ; l0 ¼ lð0Þ ¼ i; ~l1 ¼ �iqlð0Þ=qv1; ~l2 ¼ �iqlð0Þ=qv2; z ¼ y1 þ iy2; z̄ ¼

y1 þ iy2; and gijðmÞ ði þ j ¼ 2; 3Þ were given in Ref. [7].
According to the normal form theory [11], there exists smooth m-dependent change of

coordinate which puts map (15) into its normal form

Fmðz; z̄Þ ¼ lðmÞz þ aðmÞz2z̄ þ bðmÞz̄3 þ Oðjzj5Þ; (17)

where að0Þ and bð0Þ take forms

að0Þ ¼
g21

2
þ

jg02j
2

2ðl20 � l̄0Þ
þ

jg11j
2

1� l̄0
þ

g11g20ð1� 2l0Þ

2ðl20 � l0Þ
; (18)

bð0Þ ¼
g03

6
þ

g02ðg11 þ g20Þ

2ðl̄
2

0 � l0Þ
; (19)

where gij ¼ gijð0Þ ði þ j ¼ 3Þ:
Define a1 and a2 as

a1 ¼
að0Þ
l0

; a2 ¼
bð0Þ
l0

: (20)

Suppose that m varies in some neighborhood of ½0; 0	T; we have

z0 ¼ Fmðz; z̄Þ ¼ lðmÞðz þ a1z2z̄ þ a2z̄3Þ þ Oðjzj5Þ: (21)

Let us put, Eq. (21) in polar coordinates: z ¼ reiy: Then the new form of the map is

r0 ¼ jljr½1þ a1rr
2 þ ða2r cos 4yþ a2i sin 4yÞr2	 þ Oðr5Þ;

y0 ¼ yþ jþ a1ir
2 þ ða2i cos 4y� a2r sin 4yÞr2	 þ Oðr4Þ; ð22Þ

where a1r ¼ Reða1Þ; a1i ¼ Imða1Þ; a2r ¼ Reða2Þ; a2i ¼ Imða2Þ; j ¼ arg l:
We define the new parameters x1; x2 by

x1 ¼ jlj � 1; x2 ¼ j� j0 (23)

with j0 ¼ arg l0: Map (22) is changed into Fx : ðr; yÞ ! ðr0; y0Þ; or

Fx :
r0 ¼ ð1þ x1Þr½1þ a1rr

2 þ ða2r cos 4yþ a2i sin 4yÞr2	 þ Oðr5Þ;

y0 ¼ yþ j0 þ x2 þ a1ir
2 þ ða2i cos 4y� a2r sin 4yÞr2	 þ Oðr4Þ:

(
(24)
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Let us look for fixed points of order 4 which satisfy the equation F4
xðr; yÞ ¼ ðr; yÞ; after neglecting

the higher-order terms and noting the fact 4j0 ¼ 0mod2p; we have

ð1þ 4x1Þ½1þ 4a1rr
2 þ 4ða2r cos 4yþ a2i sin 4yÞr2	 ¼ 1;

x2 þ a1ir
2 þ ða2i cos 4y� a2r sin 4yÞr2	 ¼ 0: ð25Þ

Eliminating r2 from Eq. (25), we obtain

x2
x1

¼
a1i þ a2i cos 4y� a2r sin 4y
a1r þ a2r cos 4yþ a2i sin 4y

: (26)

Let d ¼ x2=x1: When x1 and x2 in Eq. (26) take suitable values, we can solve y which corresponds
to the fixed point of order 4 for map (9). From Eq. (26),

sinð4y� b0Þ þ d cosð4y� b0Þ ¼ ða1i � a1rdÞ=ja2j; (27)

where b0 ¼ arg a2: After dividing the equation above by
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ d2

p
; we get

sinð4y� b0 þ g0Þ ¼
a1i � a1rd

ja2j
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ d2

p ; (28)

where g0 ¼ tan�1 d: So we obtain the condition which guarantees the existence of fixed points of
order 4, that is

ja1i � a1rdjpja2j

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ d2

p
: (29)

There are two families of solutions: yk ¼ y0 þ kp=2 and y0k ¼ �y0 þ kp=2; k ¼ 0; 1; 2; 3; where y0
is the minimal solution of Eq. (28), and at least one of the families is unstable [11].

Condition (29) is equivalent to

d1pdpd2; (30)
Fig. 2. Arnold tongue at l0 ¼ i:
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where

d1;2 ¼
a1ra1imja2j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ja1j

2 � ja2j
2

p
a2
1r � ja2j

2
: (31)

It is obvious that we need

ja2joja1j and ja1rjaja2j: (32)

Condition (30) defines an Arnold tongue for the resonance l40 ¼ 1 [14]. When the eigenvalue l
belongs to the Arnold tongue (see Fig. 2), two period n–4 motions occur for the vibro-impact
system, and usually they have the opposite stabilities. When the parameters satisfy dod1 or
d4d2; Hopf bifurcation may take place and a quasi-periodic motion appears. Since d1a� d2 in
general, the Arnold tongue is asymmetrical with the imaginary axis.

In this case it is possible to approximate (17) by the ‘‘time-1 map’’ of the flow of a Z4-
equivariant vector field. Due to its Z4-symmetry we obtain

_z ¼ �z þ aðmÞz2z̄ þ bðmÞz̄3 þ Oðjzj5Þ; (33)

where � ¼ x1 þ ix2: By means of rescaling z and time [14], we have

_z ¼ �z þ Az2z̄ þ z̄3; (34)

where A ¼ aðmÞ=jbðmÞj:
The bifurcation analysis of system (34) is very complicated and requires numerical techniques

[18]. The bifurcation diagram depends on A ¼ Að0Þ; so the A-plane is divided into several regions
with different bifurcation diagrams in the (x1; x2)-plane (shown in Fig. 3). As one can see, the
boundaries on the A-plane are symmetric under reflections with respect to the coordinate axes.
Thus, it is sufficient to study them in one quadrant of the A-plane. The bifurcation sequences and
phase portraits for every region are studied by Arnold [14], Berezovskaia [17] and Krauskopf
Fig. 3. Division of the A-plane into regions with different bifurcation diagrams.
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[18,19], which make it possible to investigate the complicated bifurcations near the resonant point
for a 2-dof vibro-impact system in the next section.
3.2. The resonance l30 ¼ 1

Now we consider the resonance l30 ¼ 1: Suppose that in some neighborhood of certain critical
value v ¼ vc; Df ð0; vÞ satisfies the following assumptions:
(C1)
(C2)
Df ð0; vcÞ has a pair of complex-conjugate eigenvalues l1 ¼ l1ðvcÞ; l2 ¼ l̄1ðvcÞ on the unit
circle (jl1ðvcÞj ¼ 1); the other eigenvalues liðvcÞ ði ¼ 3; 4Þ stay inside the unit circle, i.e.
jliðvcÞjo1;

ql1ðvÞ
qv1

jv¼vc
and

ql1ðvÞ
qv2

jv¼vc
a0; which represents the transversal condition for two-parameter

family;

(C3)
 l31ðvcÞ ¼ 1; l1ðvcÞa1:
There exists smooth m-dependent change of coordinate which puts map (15) into its normal
form

Fmðz; z̄Þ ¼ lðmÞz þ 1
2 g02ðmÞz̄

2 þ aðmÞz2z̄ þ Oðjzj4Þ: (35)

Let us consider F3
m which is the iterate map Fm and, after omitting the high-order terms, we write

F3
m ¼ ð1þ 3m1

~l1 þ 3m2
~l2Þz þ 3

2
g02l̄0z̄2 þ 3al̄0z2z̄: (36)

We use ~Fmðz; z̄Þ to stand for the ‘‘time-1 map’’ of the following differential equation:

_z ¼ �z þ 1
2

g02z̄2 þ az2z̄; (37)

where � ¼ m1
~l1 þ m2

~l2: It is easy to see

F3
m �

~Fmðz; z̄Þ: (38)

Relationship (38) shows that we can use differential equation (37) to describe the dynamics of the
map near the resonant point. Arnold considers in Refs. [14,15] a differential equation in C;
invariant by rotations of 2p=3 about the origin. The time 1 map for this equation is supposed to
approximate the map F3

m up to high-order terms. If Eq. (37) has a nontrivial equilibrium, then
map (35) may possess a cycle of period 3. And furthermore, if the equilibrium of (37) undergoes a
Hopf bifurcation at a certain value mc; and gives birth to a closed orbit, then the planar map

z0 ¼ ~Fmðz; z̄Þ (39)

possesses an invariant circle at a certain value of parameter m � mc [16].
Let us define parameters by x1 ¼ Reð�Þ; x2 ¼ Imð�Þ: According to Arnold theory [14,15], the

Hopf bifurcation condition for differential equation (37) is

x1prjReðaÞjx22; (40)

where r denotes the radius of inertia of triangle formed from three saddle points.
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It is not difficult to analyze the two-parameter unfoldings and phase portraits of Eq. (37) near
the resonant point [14]. Fig. 4 shows the partition of the parameter plane, and Fig. 5 shows phase
portraits corresponding to the regions of Fig. 4.
4. Numerical simulation of Hopf and subharmonic bifurcations

We use the procedure in Section 3 to compute Hopf and subharmonic bifurcations of the period
n–1 motion, and then verify the results by numerical simulation. Considering the basic period 1–1
motion, we choose the first set of parameters: vm ¼ 5:939971; vk ¼ 2:0; z ¼ 0; f 20 ¼ 0; R ¼ 0:8;
and take o and b as the control parameters, m ¼ ðm1;m2Þ

T
¼ ðo� oc; b � bcÞ

T: According to the
theoretical analysis in the previous section and numerical computation, we obtain the bifurcation
point ðoc; bcÞ; the normal form coefficients and eigenvalues of Df 0ð0Þ satisfying conditions (H1)
and (H3), as follows:

oc ¼ 0:4353907; bc ¼ 3:1;
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l0; l̄0 ¼ 0:00000002� 1:00000003i; jl0j ¼ 1;

l3;4 ¼ 0:392327� 697194i; jl3ð0Þjo1:

a1 ¼ �1:434816� 1:029660i; a2 ¼ �0:085915þ 1:022163i and A ¼ �1:39877� 1:00380i which
satisfy condition (32) and belong to region III in Fig. 3, so there exists an Arnold tongue defined
by d1 ¼ 0:040; d2 ¼ 2:896: We can compute

~l1 ¼ �i
qlð0; 0Þ
qm1

¼ �i
ql
qo

ðoc; bcÞ ¼ 10:464� 32:617i;

~l2 ¼ �i
qlð0; 0Þ
qm2

¼ �i
ql
qb

ðoc; bcÞ ¼ 0:524� 1:138i;

lðmÞ ¼ 32:617m1 þ 1:138m2 þ ð1þ 10:464m1 þ 0:524m2Þiþ Oðkmk2Þ:

We can calculate x1ðmÞ; x2ðmÞ and d to determine whether it is period 4–4 motions or quasi-
periodic motion that bifurcates from the fixed point.

By numerical simulation, the division of the parameter plane for different behavior near the
resonant point is shown sketchily in Fig. 6. In regions (1), (6) and the third quadrant in parameter
plane, the fixed point is stable. When the parameters cross the line LH1 and LH2; the Hopf
(Neimark–Sacker) bifurcation occurs. When the parameters cross the line LSN1 and LSN2; the
saddle-node bifurcation occurs with the first one on and the second one outside the invariant
circle. In region (3), there exists the attractive invariant circle and stable 4–4 fixed points outside
the invariant circle. As the parameters pass across the line LSC; the invariant circle disappears and
on the line LSC there is a heteroclinic loop from saddle connection. In region (4) which is bounded
by the lines of saddle-node bifurcations there exist 4–4 fixed points.

A small perturbation of the fixed point X 0 ¼ ð _x10þ; x20; _x20þ; t0Þ
T is taken as an initial point of

the Poincaré map (9). As m changes near mc ¼ ð0; 0Þ; dynamical behavior of the vibro-impact
system is displayed on the coordinate plane ðt;x2Þ and on the other projected Poincaré sections of
s: Fig. 7(a) and (i) show that period 1–1 motion is stable, which correspond respectively to regions
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Fig. 7. The Poincaré map: (a) m1 ¼ �0:0002; m2 ¼ 0:003; stable 1–1 fixed point; (b) m1 ¼ �0:000085; m2 ¼ 0:003;
attracting invariant circle or torus T1; (c) m1 ¼ �0:00008102; m2 ¼ 0:003; attracting invariant circle or torus T1; (d)
m1 ¼ �0:00008101; m2 ¼ 0:003; stable cycle of period 4; (e) m1 ¼ 0; m2 ¼ 0:003; stable cycle of period 4; (f) m1 ¼ 0:00024;
m2 ¼ �0:003; stable cycle of period 4; (g) m1 ¼ 0:0002; m2 ¼ �0:003; attracting invariant circle (or torus T1) and stable

cycle of period 4 outside the circle; (h) m1 ¼ 0:0002; m2 ¼ �0:0035; attracting invariant circle or torus T1; (i) m1 ¼

0:00015; m2 ¼ �0:0038; stable cycle of period 1.
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(6) and (1) in Fig. 6. Fig. 7(b) shows that Hopf bifurcation of period 1–1 motion occurs and the
system yields quasi-periodic motion which is an attractive invariant circle on the coordinate
planes, corresponding to the region right to the Arnold tongue in Fig. 2 and region (5) in Fig. 6.
By passing across the first saddle-node bifurcation (see Fig. 7(c)), subharmonic motion creates
and all transitive motions settle down to a stable period 4–4 motion, Fig. 7(d), (e) and (f),
corresponding to the region of the Arnold tongue in Fig. 2 and region (4) in Fig. 6. Fig. 7(f) closes
to the saddle connection LSC in Fig. 6. Fig. 7(g) shows that an invariant circle and period 4–4
motion coexist, corresponding to region (3) inFig. 6. Fig. 7(h) indicates that the invariant circle is
the only attractor, corresponding to region (2) in Fig. 6.

Let us try another set of parameters vm ¼ 1:5; vk ¼ 2:2; f 20 ¼ 0; R ¼ 0:7; b ¼ 1:4: And now we
take o and z as the control parameters, m ¼ ðm1;m2Þ

T
¼ ðo� oc; z� zcÞ

T: As we have done to the
previous set of parameters, we obtain the bifurcation point ðoc; zcÞ; the normal form coefficients
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Fig. 8. The Poincaré map: (a) m1 ¼ �0:0008; m2 ¼ �0:00033; attracting invariant circle or torus T1; (b) m1 ¼ �0:0008;
m2 ¼ �0:00035; attracting invariant circle or torus T1; (c) m1 ¼ 0:0003; m2 ¼ �0:0003; unstable period 3–3 motion

(plotting for 1500 impacts); (d) m1 ¼ 0:0003; m2 ¼ �0:0003; chaos (plotting for 20,000 impacts); (e) m1 ¼ 0:0008; m2 ¼

0:0002; unstable period 3–3 motion (plotting for 2400 impacts); (f) m1 ¼ 0:0008; m2 ¼ 0:00029; attracting invariant

circles or torus T1:
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and eigenvalues of Df 0ð0Þ satisfying conditions (C1) and (C3), as follows:

oc ¼ 0:66473626; zc ¼ 0:00112533;

l0; l̄0 ¼ �0:50000008� 0:86602546i; jl0j ¼ 1;

l3;4 ¼ �0:182528� 0:651986i; jl3ð0Þjo1:

g02 ¼ �0:098430� 0:302762i; a ¼ 0:022746� 0:028133i

and

~l1 ¼ �i
qlð0; 0Þ
qm1

¼ �i
ql
qo

ðoc; zcÞ ¼ 7:220� 17:755i;

~l2 ¼ �i
qlð0; 0Þ
qm2

¼ �i
ql
qz

ðoc; zcÞ ¼ �17:875� 2:091i;

�ðmÞ ¼ 7:220m1 � 17:875m2 � ð17:755m1 þ 2:091m2Þiþ Oðkmk2Þ; r ¼ 119:6:

Furthermore, we can calculate x1ðmÞ and x2ðmÞ to determine whether or not there is a stable
invariant torus between the unstable cycle of period 3 and the fixed point when the latter loses its
stability.



ARTICLE IN PRESS

W. Ding, J. Xie / Journal of Sound and Vibration 287 (2005) 101–115114
Figs. 8(a) and (b) show that the Hopf bifurcation of period 1–1 motion occurs and the system
yields quasi-periodic motion, corresponding to the region (3) in Fig. 4. Subharmonic bifurcation
of period 1–1 motion occurs and the system settles down to chaos via unstable period 3–3 motion,
as shown in Figs. 8(c), (d) and (e), corresponding to region (4) or (5) in Fig. 4. Fig. 8(f) shows that
the Hopf bifurcation of period 1–1 motion takes place, which corresponds to region (6) in Fig. 4.
When the parameter vector m is sufficiently close to the boundary curves (the boundaries between
regions (3) and (4), or between the regions (6) and (5) in Fig. 4), the invariant circle has limited
smoothness and has the shape of a ‘‘triangle’’ (Figs. 8(b) and (f)).
5. Conclusions

In this paper, we studied the Hopf and subharmonic bifurcations in two resonance cases for a 2-
dof vibro-impact system by theoretical analysis and numerical simulations. Firstly, the period n–1
motion and the four-dimensional Poincaré map of the system were established by analytical
method and the stability of the periodic motion was analyzed. Secondly, by center manifold
theorem and normal form methods, we reduced the four-dimensional map into its two-
dimensional normal form, and obtained the analytic expressions of the normal form coefficients.
Then for the resonance l40 ¼ 1; we derived the conditions to determine whether there exists an
invariant circle or fixed points of order 4 that bifurcated from the fixed point as the two control
parameters changed. For the resonance l30 ¼ 1; we introduced Arnold’s method to analyze the
local behavior of the vibro-impact system, and approximated the two-parameter unfolding of the
reduced map by a ‘‘time-1’’ map of a planar autonomous differential equation, and showed that
an unstable period 3–3 motion and a stable quasi-periodic motion could coexist, and might lead to
chaotic motion via homoclinic bifurcations of the unstable period 3–3 motion. Finally, the results
of numerical simulations confirmed the theoretical analysis. The analysis of the two-parameter
family proposed in this paper for the 2-dof vibro-impact system developed the results of one-
parameter family by other authors. It shows that there exists complicated and interesting dynamic
behavior of the vibro-impact system near order 4 resonant point, which matches the study in the
Krauskopf papers [18,19]. The tori bifurcation and the route of quasi-periodic impacts to chaos
are also reported briefly. It seems to us that our method could well be applied to investigate
bifurcations of periodic motions in different kinds of vibrating systems with or without impacts.
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